Fast reciprocal nearest neighbors clustering

نویسندگان

  • Roberto Javier López-Sastre
  • Daniel Oñoro-Rubio
  • Pedro Gil-Jiménez
  • Saturnino Maldonado-Bascón
چکیده

This paper presents a novel approach for accelerating the popular Reciprocal Nearest Neighbors (RNN) clustering algorithm, i.e. the fast-RNN. We speed up the nearest neighbor chains construction via a novel dynamic slicing strategy for the projection search paradigm. We detail an efficient implementation of the clustering algorithm along with a novel data structure, and present extensive experimental results that illustrate the excellent performance of fast-RNN in lowand high-dimensional spaces. A C++ implementation has been made publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast k-means based on KNN Graph

In the era of big data, k-means clustering has been widely adopted as a basic processing tool in various contexts. However, its computational cost could be prohibitively high as the data size and the cluster number are large. It is well known that the processing bottleneck of k-means lies in the operation of seeking closest centroid in each iteration. In this paper, a novel solution towards the...

متن کامل

Fast PNN-based Clustering Using K-nearest Neighbor Graph

Search for nearest neighbor is the main source of computation in most clustering algorithms. We propose the use of nearest neighbor graph for reducing the number of candidates. The number of distance calculations per search can be reduced from O(N) to O(k) where N is the number of clusters, and k is the number of neighbors in the graph. We apply the proposed scheme within agglomerative clusteri...

متن کامل

Algorithm For Identifying Relevant Features Using Fast Clustering

In the high dimensional data set having features selection involves identifying a subset of the most useful features that produce compatible results as the original entire set of features. A fast algorithm may be evaluated from both the ability concerns the time required to find a subset of features and the value is required to the quality of the subset of features. Fast clustering based featur...

متن کامل

A Self-adaptive Spectral Clustering Based on Geodesic Distance and Shared Nearest Neighbors

Spectral clustering is a method of subspace clustering which is suitable for the data of any shape and converges to global optimal solution. By combining concepts of shared nearest neighbors and geodesic distance with spectral clustering, a self-adaptive spectral clustering based on geodesic distance and shared nearest neighbors was proposed. Experiments show that the improved spectral clusteri...

متن کامل

Fast and versatile algorithm for nearest neighbor search based on a lower bound tree

In this paper, we present a fast and versatile algorithm which can rapidly perform a variety of nearest neighbor searches. Efficiency improvement is achieved by utilizing the distance lower bound to avoid the calculation of the distance itself if the lower bound is already larger than the global minimum distance. At the preprocessing stage, the proposed algorithm constructs a lower bound tree (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2012